Math, asked by Anonymous, 11 months ago

prove that:
(cosecA - sin A) ( sec A- cosA) ( tanA+cotA)= 1​

Answers

Answered by Anonymous
4

Follow meh________♥♥♥

Attachments:
Answered by Anonymous
6

HEY MATE YOUR ANSWER IS HERE...

USING TRIGNOMATERIC RATIOS

cosec \: a =  \frac{1}{sin \: a}  \\  \\ sec \: a =  \frac{1}{cos \: a}  \\  \\ tan \: a \:  =  \frac{sin \: a}{cos \: a}  \\  \\ cot \: a =  \frac{cos \: a}{sin \: a}

NOW BY TAKING LHS

( \: cosec \: a \:  -  \: sin \: a)(sec \: a - cos \: a)(tan a\:  + cot \: a)

THEN

 (\frac{1}{sin \: a}  -  \: sin \: a)( \frac{1}{cos \: a}  - cos \: a)( \frac{sin \: a}{cos \: a}  +  \frac{cos \: a \: }{sn \: a } )

NOW

 (\frac{1 -  {sin}^{2} a}{sin \: a} )( \frac{1 -  {cos}^{2} a}{cos \: a} )(  \frac{ {sin}^{2}a \:  +  {cos}^{2} a }{sin a\:  \times \: cos \: a }  )

NOW BY TRIGNOMATERIC IDENTITY

1 - SIN² A = COS² A

1 - COS² A= SIN² A

SIN²A + COS² = 1

( \frac{ {cos \: }^{2} a}{sin \: a} )( \frac{ {sin}^{2}a }{cos \: a} )( \frac{1}{sin \: a \: cos \: a} )

BY SOLVING IT FURTHER

( \frac{cos \: a}{1} )( \frac{sin \: a}{1} )( \frac{1}{sin \: a \: cos \: a \: } )

HENCE

BY SOLVING OUT THE TERMS

WE GET

= 1

THANKS FOR YOUR QUESTION HOPE IT HELPS

keep smiling ☺️✌️

Similar questions