prove that
(cosecA - sinA ) (secA- cosA) = 1/tanA+cotA
Answers
Answered by
5
Answer:
Step-by-step explanation:
(cosecA-sinA)(secA-cosA)
=(1/sinA – sinA )(1/cosA – cosA)
=[(1- sin2A)/sinA][(1-cos2A)/cosA]
=[(cos2A)/sinA][(sin2A)/cosA]
=sinA*cosA
\frac{sinA cosA}{sin^2A + cos^2A}
= \frac{1}{sin^2A/sinA cosA + cos^2A/sinA cosA }
=\frac{1}{tanA + cotA }
=rhs
Hope it helps u mark as brainliest please ok
Answered by
3
Attachments:
Similar questions