Prove that: (cosecA - sinA)(secA - cosA) = 1/tanA cotA
Answers
Answered by
7
lhs = (cosecA - sin A)(secA - cosA)
= (1/sinA - sinA) ( 1/cosA - cosA)
= [ (1- sin²A)/sinA] [(1-cos²A)/cosA]
= [cos²A/sinA * sin²A/cosA]
=[cos²Asin²A/sinAcosA]
= cosAsinA
check ur rhs part
= (1/sinA - sinA) ( 1/cosA - cosA)
= [ (1- sin²A)/sinA] [(1-cos²A)/cosA]
= [cos²A/sinA * sin²A/cosA]
=[cos²Asin²A/sinAcosA]
= cosAsinA
check ur rhs part
Similar questions