Math, asked by Ranjurajbha, 4 months ago

Prove that
coseco
cota (90°-o) by
tan²o-1
+cosec²o by
sin2o-cosec2o=1 by sin2o-cos2o​

Answers

Answered by dmongp0712
0

A=0 finally thanks

Step-by-step explanation:

Answer:

\frac{tan(90-A)cotA}{cosec^{2}A} - cos^{2}A=0

cosec

2

A

tan(90−A)cotA

−cos

2

A=0

Step-by-step explanation:

LHS = \frac{tan(90-A)cotA}{cosec^{2}A} - cos^{2}ALHS=

cosec

2

A

tan(90−A)cotA

−cos

2

A

=\frac{cotA\cdot cotA}{cosec^{2}A} - cos^{2}A=

cosec

2

A

cotA⋅cotA

−cos

2

A

/* tan(90-A) = cotA */

= \frac{cot^{2}A}{cosec^{2}A}-cos^{2}A=

cosec

2

A

cot

2

A

−cos

2

A

=\frac{\frac{cos^{2}A}{sin^{2}A}}{\frac{1}{sin^{2}A}}-cos^{2}A=

sin

2

A

1

sin

2

A

cos

2

A

−cos

2

A

________________________

\begin{gathered}i)cotA=\frac{cosA}{sinA}\\ii) cosecA = \frac{1}{sinA}\end{gathered}

i)cotA=

sinA

cosA

ii)cosecA=

sinA

1

________________________

\begin{gathered}=\cos^{2}A-cos^{2}A\\=0\\=RHS\end{gathered}

=cos

2

A−cos

2

A

=0

=RHS

Therefore,

\frac{tan(90-A)cotA}{cosec^{2}A} - cos^{2}A=0

cosec

2

A

tan(90−A)cotA

−cos

2

A=0

Similar questions