Prove that: cosecø + cotø / cosecø − cotø = 1 + 2cot²ø + 2cosec²ø cosø.
Answers
Step-by-step explanation:
Given :-
(cosecø + cotø)/(cosecø − cotø)
To find :-
Prove that:
(cosecø + cotø) / (cosecø − cotø )
= 1 + 2cot²ø + 2cosec²ø cosø.
Solution :-
On taking LHS
(cosecø + cotø)/(cosecø − cotø)
On multiplying both numerator and denominator with (cosecø + cotø) then
=> [(cosecø + cotø)/(cosecø − cotø)]× [(cosecø + cotø)/(cosecø + cotø)]
=> [(cosecø + cotø)(cosecø + cotø)] /[(cosecø + cotø)(cosecø − cotø)]
=> (cosecø + cotø)²/(cosec²ø − cot²ø)
Since , (a+b)(a-b) = a²-b²
=> (cosecø + cotø)²/1
Since Cosec² A - Cot² A = 1
=> (cosecø + cotø)²
=> cosec²ø + cot²ø+2cosecø.cotø
Since, (a+b)² = a²+2ab+b²
=> 1+cot²ø+cot²ø+2cosecø.cotø
Since,Cosec² A - Cot² A = 1
=> 1+2cot²ø+2cosecø.cotø
We know that
Cot A = Cos A / Sin A
=> 1+2cot²ø+2cosecø.(cosø/sinø)
=> 1+2cot²ø+2cosecø.(cosø× cosecø)
Since Cosec A = 1/Sin A
=> 1+2cot²ø+2cosec²ø.cosø
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
If (cosecø + cotø) / (cosecø − cotø ) then
= 1 + 2cot²ø + 2cosec²ø cosø.
Used Algebraic Identities:-
→ (a+b)(a-b) = a²-b²
→ (a+b)² = a²+2ab+b²
Used Trigonometric Identities:-
→ Cosec² A - Cot² A = 1
Used Formulae:-
→ Cosec A = 1/Sin A
=> Cot A = Cos A / Sin A