Math, asked by Hanakazi99, 1 year ago

prove that: (cosecp-sinp) (secp-cosp) (tanp+cotp) =1

Answers

Answered by Swarup1998
31
\boxed{\underline{\textsf{Formulas :}}}

\textsf{i) sinx * cosecx = 1}

\textsf{ii) cosx * secx = 1}

\textsf{iii) tanx * cotx = 1}

\mathsf{iv) sin^{2}x + cos^{2}x = 1}

\mathsf{v) sec^{2}x - tan^{2}x = 1}

\mathsf{vi) cosec^{2}x - cot^{2}x = 1}

\boxed{\underline{\textsf{Proof :}}}

\textsf{Now,}

\small{\mathsf{(cosecp - sinp) (secp - cosp) (tanp + cotp)}}

=\small{\mathsf{(\frac{1}{sinp}-sinp) (\frac{1}{cosp}-cosp)(\frac{1}{cotp}+cotp)}}

=\mathsf{\frac{1 - sin^{2}p}{sinp} * \frac{1 - cos^{2}p}{cosp} * \frac{1 + cot^{2}p}{cotp}}

=\mathsf{\frac{cos^{2}p}{sinp} * \frac{sin^{2}p}{cosp} * \frac{cosec^{2}p}{cotp}}

=\mathsf{\frac{cos^{2}p * sin^{2}p * cosec^{2}p}{sinp * cosp * cotp}}

=\mathsf{\frac{cos^{2}p}{sinp * cosp * \frac{cosp}{sinp}}}

=\mathsf{\frac{cos^{2}p * sinp}{cos^{2}p * sinp}}

=\mathsf{1}

\to \boxed{\boxed{\tiny{\mathsf{(cosecp - sinp) (secp - cosp) (tanp + cotp) = 1}}}}

\textsf{Hence, proved.}
Answered by harshitapatel17980
0

Step-by-step explanation:

  • this the solution to the question
Attachments:
Similar questions