prove that (cosecQ-cotQ)square =1-cosQ/1+cosQ
Answers
Answered by
6
Step-by-step explanation:
To Prove :-
(cosecQ - cotQ)² = 1 - cosQ/ 1 + cosQ
Formula Required :-
1) cosecA = 1/sinA
2) cotA = cosA /sinA
3) sin²A + cos²A = 1
Solution :-
Taking L.H.S :-
= (cosecQ - cotQ)²
=
[ ∴ cosecQ = 1/sinQ , cotQ = cosQ/sinQ ]
=
=
[∴ (a/b)² = a²/b² ]
=
=
[ ∴ sin²Q + cos²Q = 1
→ sin²Q = 1 - cos²Q ]
=
=
[∴ a² - b² = (a + b)(a - b) ]
=
[ ∴ a² = a × a ]
Cancelling the common terms :-
=
= R.H.S
Hence Proved.
Similar questions