Math, asked by bholusingh7352, 1 year ago

Prove that coses A - cot A =√1-cos A÷√1+cos A

Answers

Answered by αmαn4чσu
42

\huge\mathfrak\red{Answer}

 \csc \alpha  -  \cot \alpha   \\  \frac{1}{ \sin \alpha  }  -  \frac{ \cos \alpha }{ \sin \alpha  }  \\  \\ take \: lcm \\  \\  \frac{1 -  \cos \alpha  }{ \sin \alpha  }  \\   \\ \frac{ {( \sqrt{1 -  \cos \alpha )} }^{2} }{ \sqrt{ (1 -  {cos}^{2} \alpha )  } }  \\  \\  \frac{  \sqrt{ {(1 -  \cos \alpha )}^{2} }  }{ \sqrt{(1 -  \cos \alpha )(1 +  \cos \alpha ) } }  \\  \\  \frac{ \sqrt{1 -  \cos \alpha  } }{ \sqrt{1 +  \cos \alpha } }  \\  |hence \: proved|

Answered by anu24239
13

\huge\mathfrak\red{Answer}

 \csc \alpha  -  \cot \alpha  =  \frac{ \sqrt{1 -  \cos \alpha  } }{ \sqrt{1 +  \cos \alpha  } }  \\  \\  \frac{1}{ \sin \alpha  }  -  \frac{ \cos \alpha  }{ \sin \alpha }  =  \frac{ \sqrt{1 -  \cos \alpha  } }{ \sqrt{1 +  \cos \alpha  } }  \\  \\ multiply \:and \: divide \:  by \sqrt{1 -  \cos \alpha }  \\ on \: right \: hand \: side \\  \\  \frac{1 -  \cos \alpha }{ \sin \alpha  }  =  \frac{ \sqrt{ {(1 -  \cos \alpha ) }^{2} } }{ \sqrt{1 -  {cos}^{2}  \alpha } }  \\  \\  \frac{1 -  \cos \alpha  }{ \sin \alpha  }  =  \frac{1 - cos \alpha }{ \sqrt{ {sin}^{2} \alpha  } }  \\  \\  \frac{1 - cos \alpha }{ \sin \alpha  }  =  \frac{1 -  \cos \alpha  }{ \sin \alpha }

Similar questions