Prove that :-
(coses A - sin A) ( sec A - cos A) = 1/tanA+cotA
Answers
Answered by
3
Answer:
We have to just simplify both side of the question.
Now, taking L. H. S =
(cosecA - sinA)×(secA - cosA)
= (1/sinA - sinA)×(1/cosA - cosA)
= (1-sin²A)/sinA × (1-cos²A)/cosA
= cos²A/sinA × sin²A/cosA
= cos²Asin²A/cosAsinA
= cosAsinA
Now, R. H. S =
1/(tanA + cotA)
= 1/(sinA/cosA + cosA/sinA)
= 1/[(sin²A + cos²A)/cosAsinA]
= 1/[(1/cosAsinA)]
= cosAsinA
Since L. H. S. = R. H. S.
Therefore the given equation is proof.
In such types of question you have to take care of braket and sign.
Thanks!
Answered by
71
• Let's take L.H.S. –
• Now, Let's take R.H.S –
Similar questions