Math, asked by mathslover18, 4 days ago

Prove that :-

(coses A - sin A) ( sec A - cos A) = 1/tanA+cotA

Answers

Answered by Anonymous
3

Answer:

We have to just simplify both side of the question.

Now, taking L. H. S =

(cosecA - sinA)×(secA - cosA)

= (1/sinA - sinA)×(1/cosA - cosA)

= (1-sin²A)/sinA × (1-cos²A)/cosA

= cos²A/sinA × sin²A/cosA

= cos²Asin²A/cosAsinA

= cosAsinA

Now, R. H. S =

1/(tanA + cotA)

= 1/(sinA/cosA + cosA/sinA)

= 1/[(sin²A + cos²A)/cosAsinA]

= 1/[(1/cosAsinA)]

= cosAsinA

Since L. H. S. = R. H. S.

Therefore the given equation is proof.

In such types of question you have to take care of braket and sign.

Thanks!

Answered by Anonymous
71

 \sf{ \underline{TO  \: PROVE :-}}

 \displaystyle{\implies{ \sf{(coses \:A - sin  \: A)(sec \: A - cos \: A) =  \frac{1}{tan \: A + cot \: A} }}}

 \sf{ \underline{SOLUTION :-}}

• Let's take L.H.S. –

\displaystyle{\implies{ \sf{(coses \:A - sin  \: A)(sec \: A - cos \: A)}}}

\displaystyle{\implies\sf\:\left(\:\:\dfrac{ 1 }{sin \: A } -  \frac{sin \: A}{1} \:\right)}  \sf \:\left(\:\:\dfrac{ 1 }{cos \: A } -  \frac{cos \: A}{1} \:\right) \:  \:  \:  \:  \\   \sf  Since,\: cosec \: A =  \frac{1}{sin \:A }  \: and \: sec \: A \:   =  \frac{1}{cos \:A }

\displaystyle{\implies\sf\:\left(\:\:\dfrac{ 1 - sin^{2} A }{sin \: A }  \:\right)}  \sf \:\left(\:\:\dfrac{ 1 - cos ^{2} A }{cos \: A }  \:\right)

\displaystyle{\implies\sf\:\left(\:\:\dfrac{ cos ^{ \cancel2}A \:  \:  sin^{ \cancel2}A  }{ \cancel{sinA} \: \cancel{ cosA}  } \:\right)}

 \displaystyle \implies{ \sf{sin  \: A  \: cos \:  A = L.H.S.}}

• Now, Let's take R.H.S –

 \displaystyle{ \implies{ \sf{\frac{1}{tan \: A + cot \: A}}}}

\displaystyle {\implies \sf{ \frac{1}{ \frac{sinA}{cosA}  + \frac{cosA}{sinA}  }}}

\displaystyle {\implies \sf{ \frac{1}{ \frac{sin^{2} A  \:  +   \: cos ^{2} A}{cos  A \: sinA}  }}}

\displaystyle {\implies \sf{ \frac{  \cancel{sinA} \:  \:  \cancel{cosA}}{sin ^{ \cancel2} A    +   cos ^{ \cancel2}A } }}

\displaystyle \implies{ \sf{sin  \: A  \: cos \:  A = R.H.S.}}

 \displaystyle \implies \sf{L.H.S = R.H.S}

 \displaystyle{ \implies{ \sf{\bold{Hence \:Proved}}}}

Similar questions