Math, asked by agrimdubey2243, 1 year ago

Prove that cosh3z equals to 4cosh^3z

Answers

Answered by ulla567
0
Since the angle sum formula of sinus:
sin
(
α
+
β
)
=
sin
α
cos
β
+
cos
α
sin
β
,
and the double angle formula of cosine:
cos
(
2
α
)
=
cos
2
α

sin
2
α
=
2
cos
2
α

1
=
1

2
sin
2
α
then:
sin
(
3
x
)
=
sin
(
2
x
+
x
)
=
sin
(
2
x
)
cos
x
+
cos
(
2
x
)
sin
x
=
=
(
2
sin
x
cos
x
)

cos
x
+
(
1

2
sin
2
x
)
sin
x
=
=
2
sin
x
cos
2
x
+
sin
x

2
sin
3
x
=
=
2
sin
x
(
1

sin
2
x
)
+
sin
x

2
sin
3
x
=
=
2
sin
x

2
sin
3
x
+
sin
x

2
sin
3
x
=
=
3
sin
x

4
sin
3
x
.

ulla567: 100 Percent correct answer
Answered by tishajain157ovqv1l
0

Since the angle sum formula of sinus:

sin(α+β)=sinαcosβ+cosαsinβ,

and the double angle formula of cosine:

cos(2α)=cos2αsin2α=2cos2α−1=1−2sin2α

then:

sin(3x)=sin(2x+x)=sin(2x)cosx+cos(2x)sinx=

=(2sinxcosx)cosx+(1−2sin2x)sinx=

=2sinxcos2x+sinx−2sin3x=

=2sinx(1−sin2x)+sinx−2sin3x=

=2sinx−2sin3x+sinx−2sin3x=

=3sinx−4sin3x.

may this help you 

mark as brallient

Similar questions