Math, asked by pritidalvi18, 2 months ago

prove that
coso.coto/1+sino = coseco -1​

Answers

Answered by VishnuPriya2801
9

Answer:-

We have to prove:-

 \dfrac{ \cos( \theta)  \times  \cot( \theta) }{1 +  \sin( \theta) }  =  \csc( \theta)  - 1

using cot θ = cos θ/sin θ we get,

 \: \implies \:\frac{ \cos( \theta)  \times  \frac{ \cos( \theta) }{ \sin ( \theta)}  }{1 +  \sin( \theta) }  =  \csc( \theta)  - 1 \\  \\  \\ \implies \: \frac{ \frac{ \cos ^{2} ( \theta) }{ \sin( \theta) } }{1 +  \sin( \theta) }  = \csc( \theta)  - 1

Using the identity cos² θ = 1 - sin² θ we get,

 \implies  \:  \dfrac{1 -  { \sin}^{2} ( \theta)}{ \sin( \theta) }  \times  \dfrac{1}{1 +  \sin( \theta) }  =  \csc( \theta)  - 1

Using - = (a + b)(a - b) in LHS we get,

 \implies \:  \frac{(1 +  \sin( \theta) )(1 -  \sin( \theta)) }{ \sin( \theta) (1 +  \sin( \theta)) }  =  \csc( \theta)  - 1 \\  \\  \\ \implies \: \frac{1 -  \sin( \theta) }{ \sin( \theta) }  = \csc( \theta)  - 1 \\  \\  \\ \implies \: \frac{1}{ \sin( \theta) }  -  \frac{ \sin( \theta) }{ \sin( \theta) }  = \csc( \theta)  - 1

Using 1/sin θ = cosec θ in LHS we get,

 \implies \:  \csc( \theta)  - 1 = \csc( \theta)  - 1

Hence, Proved.

Similar questions