Math, asked by sujajoyjsa, 11 months ago

Prove that costheta/1-tantheta+sintheta/1-cot theta= sintheta + costheta

Answers

Answered by mkumar9835mkumar
1

Step-by-step explanation:

answer ...................................

Answered by lublana
2

Answer:

Step-by-step explanation:

LHS

\frac{cos\theta}{1-tan\theta}+\frac{sin\theta}{1-cot\theta}

\frac{cos\theta}{1-\frac{sin\theta}{cos\theta}}+\frac{sin\theta}{1-\frac{cos\theta}{sin\theta}}

Using the formula

tan\theta=\frac{sin\theta}{cos\theta},cot\theta=\frac{cos\theta}{sin\theta}

\frac{cos^2\theta}{cos\theta-sin\theta}+\frac{sin^2\theta}{sin\theta-cos\theta}

\frac{cos^2\theta}{cos\theta-sin\theta}-\frac{sin^2\theta}{cos\theta-sin\theta}

\frac{cos^2\theta-sin^2\theta}{cos\theta-sin\theta}

\frac{(cos\theta-sin\theta)(cos\theta+sin\theta)}{cos\theta-sin\theta}

Using the identity:a^2-b^2=(a+b)(a-b)

cos\theta+sin\theta=RHS

Hence, proved

#Learns more:

https://brainly.in/question/5513889:Answered by Ayushman patra

Similar questions