Math, asked by saketsingh98, 1 year ago

prove that cosx/1-tanx+sinx/1-cotx=cosx+sinx

Answers

Answered by Anonymous
12
hope this helps you☺️
Attachments:

saketsingh98: thanks a lot dude
iHelper: I also provided the answer brother! :)
saketsingh98: ya bro aapko v thanks a lot
Answered by iHelper
11
Hello!

L.H.S. = \dfrac{\sf cos\:x}{\sf 1 - tan\:x} + \dfrac{\sf sin\:x}{\sf 1 - cot\:x}

= \dfrac{\sf cos^{2}x}{\sf cos\:x(1 - tan\:x)} + \dfrac{\sf sin^{2}x}{\sf sin\:x(1 - cot\: x)}

= \dfrac{\sf cos^{2}x}{\sf cos\:x - sin\:x} + \dfrac{\sf sin^{2}x}{\sf sin\:x - cos\:x}

= \dfrac{\sf cos^{2}x}{\sf cos\:x - sin\:x} - \dfrac{\sf sin^{2}x}{\sf cos\:x - sin\:x}

= \dfrac{\sf cos^{2}x - sin^{2}x}{\sf cos\:x - sin\:x}

= \dfrac{\sf (cos\:x + sin\:x) \cancel{(cos\:x - sin\:x)}}{\sf \cancel{cos\:x - sin\:x}}

= \sf cos\:x + sin\:x = R.H.S.

\boxed{\sf HENCE\: PROVED}

Cheers!

saketsingh98: thnxx bhai
Anonymous: perfect and owsm ☺️☺️☺️
iHelper: You're welcome! :)
Similar questions