Math, asked by pratichi, 1 year ago

prove that cosx + cos(2pi/3+x) + cos (2pi/3-x)=0


samrat00725100: Please recheck the last term..... cos(2pi+3-x)
hemanthxmen49: Qla is wrong plz type it correctly...
pratichi: sorry i have corrected it now plss help :-(

Answers

Answered by samrat00725100
112
L.H.S

cos x + cos( \frac{2 \pi }{3} + x)+cos( \frac{2\pi}{3} -x)
Using cos(A+B) = cosAcosB-sinAsinB and cos(A-B) = cosAcosB+sinAsinB we get,
[tex]cosx + cos \frac{2\pi}{3}cosx-sin \frac{2\pi}{3}sinx + cos \frac{2\pi}{3}cosx +sin \frac{2\pi}{3}sinx \\ cosx + cos \frac{2\pi}{3}cosx+cos \frac{2\pi}{3}cosx [/tex]
As cos \frac{2\pi}{3}=- \frac{1}{2}
[tex]cosx(1+cos \frac{2\pi}{3}+cos \frac{2\pi}{3} ) \\ cosx(1- \frac{1}{2}- \frac{1}{2} ) \\ cosx(0) \\ 0[/tex]
Thus L.H.S = R.H.S Proved
Answered by hemanthxmen49
35
We know that cos(A+B)+cos(A-B)=2cosAcosB So here cosx+cos(120+x)+cos(120-x)=cosx+2cos120cosx =cosx+2(-1/2)cosx..,...(cos120=-1/2) =cosx-cosx =0 Hence proved...
Similar questions