prove that
Cosze = cos²o-sino For OER.
Answers
EXPLANATION.
Prove that.
⇒ cos2θ = cos²θ - sin²θ.
As we know that,
Formula of :
⇒ cos(A + B) = cos(A).cos(B) - sin(A).sin(B).
Using this formula in equation, we get.
⇒ cos(θ + θ) = cos(θ).cos(θ) - sin(θ).sin(θ).
⇒ cos(θ + θ) = cos²θ - sin²θ.
Hence proved.
MORE INFORMATION.
Trigonometric ratios of multiple angles.
(1) = sin2θ =2sinθcosθ = 2tanθ/1 + tan²θ.
(2) = cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - +2sin²θ = 1 - tan²θ/1 + tan²θ.
(3) = tan2θ = 2tanθ/1 - tan²θ.
(4) = sin3θ = 3sinθ - 4sin³θ.
(5) = cos3θ = 4cos³θ - 3cosθ.
(6) = tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.
Step-by-step explanation:
ANSWER ✍️
Prove that.
⇒ cos2θ = cos²θ - sin²θ.
As we know that,
Formula of :
⇒ cos(A + B) = cos(A).cos(B) - sin(A).sin(B).
Using this formula in equation, we get.
⇒ cos(θ + θ) = cos(θ).cos(θ) - sin(θ).sin(θ).
⇒ cos(θ + θ) = cos²θ - sin²θ.
Hence proved.
MORE INFORMATION.
Trigonometric ratios of multiple angles.
(1) = sin2θ =2sinθcosθ = 2tanθ/1 + tan²θ.
(2) = cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - +2sin²θ = 1 - tan²θ/1 + tan²θ.
(3) = tan2θ = 2tanθ/1 - tan²θ.
(4) = sin3θ = 3sinθ - 4sin³θ.
(5) = cos3θ = 4cos³θ - 3cosθ.
(6) = tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.