Math, asked by khirodkumarpand50951, 11 months ago

Prove that cot⁻¹7 + cot⁻¹8 + cot⁻¹18 = cot⁻¹3

Answers

Answered by Shadmanashiq
1

 {cot}^{ - 1} 7 +  {cot}^{ - 1} 8 +  {cot}^{ - 1} 18

 =  {tan}^{ - 1}  \frac{1}{7}  + {tan}^{ - 1} \frac{1}{8}  + {tan}^{ - 1} \frac{1}{18}

 = {tan}^{ - 1} \frac{ \frac{1}{7}  +  \frac{1}{8} }{1 -  \frac{1}{7} \times  \frac{1}{8}  }  + {tan}^{ - 1} \frac{1}{18}

 = {tan}^{ - 1} \frac{3}{11}  + {tan}^{ - 1} \frac{1}{18}

 = {tan}^{ - 1} \frac{ \frac{3}{11} +  \frac{1}{18}  }{1 -  \frac{3}{11} \times  \frac{1}{18}  }

 = {tan}^{ - 1} \frac{65}{195}

 = {tan}^{ - 1} \frac{1}{3}

 = {cot}^{ - 1} 3

( Proved)

We know,

{tan}^{ - 1}a +{tan}^{ - 1}b = {tan}^{ - 1} \frac{a + b}{1 - ab}

Similar questions