Math, asked by palakdhiman05, 10 months ago

prove that cot^2 A + 1 / cot^2 A - 1 = sec 2A​

Answers

Answered by Ïmpøstër
56

lhs =   \frac{ {cot}^{2}  \alpha  + 1}{ {cot}^{2} \alpha  - 1 }  \\  \\  =  \frac{ \frac{ {cos}^{2}  \alpha }{ {sin}^{2}a }  + 1}{ \frac{ {cos}^{2}  \alpha }{ {sin}^{2} \alpha  }  - 1}  \\  \\  =  \frac{ \frac{ {cos}^{2}  \alpha  +  {sin}^{2}  \alpha }{ {sin }^{2} \alpha  } }{  \frac{ {cos}^{2} \alpha  -  {sin}^{2}  \alpha  }{ {sin}^{2}  \alpha } }  \\  \\  =  \frac{1}{ {cos}^{2} \alpha  -  {sin }^{2}  \alpha  } . \\  \\  ...........( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1) \\  \\  =  \frac{1}{cos2 \alpha }  \\  \\ ...........( {cos}^{2}  \alpha  -  {sin}^{2}  \alpha  = cos2 \alpha ) \\  \\  = sec2 \alpha  = rhs \\  \\ .............( \frac{1}{cos \alpha }  = sec \alpha )

Answered by chavvaanuradha0
2

Answer:

hope it helps u

have a nice day

Attachments:
Similar questions