Math, asked by hrkcool, 1 year ago

Prove that : cot^2 A(sec theta - 1)/1 + sin theta = sec^2 theta ( 1 - sin theta/1 + sec theta )​

Attachments:

Answers

Answered by nikolatesla2
34
hope it's helpful to you. . .
Attachments:
Answered by aquialaska
42

Answer:

To Prove: \frac{cot^2\,\theta(sec\,\theta-1)}{(1+sin\,\theta)}=sec^2\,\theta(\frac{1-sin\,\theta}{1+sec\,\theta})

Consider,

LHS

=\frac{cot^2\,\theta(sec\,\theta-1)}{(1+sin\,\theta)}

=\frac{cot^2\,\theta(sec\,\theta-1\times\frac{sec\,\theta+1}{sec\,\theta+1})}{(1+sin\,\theta\times\frac{1-sin\,\theta}{1-sin\,\theta})}

=\frac{cot^2\,\theta(\frac{sec^2\,\theta+sec\,\theta-sec\,\theta-1}{sec\,\theta+1})}{\frac{1-sin\,\theta+sin\,\theta-sin^2\,\theta}{1-sin\,\theta}}=\frac{cot^2\,\theta(\frac{sec^2\,\theta-1}{sec\,\theta+1})}{\frac{1-sin^2\,\theta}{1-sin\,\theta}}

=\frac{cot^2\,\theta(\frac{tan^2\,\theta}{sec\,\theta+1})}{\frac{cos^2\,\theta}{1-sin\,\theta}}

=(\frac{cot^2\,\theta\times tan^2\,\theta}{sec\,\theta+1})(\frac{1-sin\,\theta}{cos^2\,\theta})

=\frac{1(1-sin\,\theta)}{(sec\,\theta+1)cos^2\,\theta}

=\frac{sec^2\,\theta(1-sin\,\theta)}{(sec\,\theta+1)}

=RHS

Hence Proved.

Similar questions