Prove that cot^2 theta -tan^2 = cosec^2 theta - sec^2 theta
Answers
Answered by
21
Hey !!!
Solution :-
from LHS
cot²¢ - tan²¢
we know that ,
cot²¢ = cosec²¢ - 1
tan²¢ = sec²¢ - 1
hence ,. cosec²¢ - 1 - (sec²¢ - 1 )
cosec²¢ - 1 - sec²¢ + 1
cosec²¢ - sec²¢ RHS prooved ..
___________________________
Hope it helps you !!
@Rajukumar111
Solution :-
from LHS
cot²¢ - tan²¢
we know that ,
cot²¢ = cosec²¢ - 1
tan²¢ = sec²¢ - 1
hence ,. cosec²¢ - 1 - (sec²¢ - 1 )
cosec²¢ - 1 - sec²¢ + 1
cosec²¢ - sec²¢ RHS prooved ..
___________________________
Hope it helps you !!
@Rajukumar111
Answered by
72
Hi ,
Here I am using A instead of theta .
***********"***********
we know the trigonometric identity
1 ) cot² A = cosec² A - 1
2 ) tan² A = sec² A - 1
********************************
LHS = cot² A - tan² A
= ( cosec² A - 1 ) - ( sec² A - 1 )
= cosec² A - 1 - sec² A + 1
= cosec² A - sec² A
= RHS
Hence proved .
I hope this helps you.
: )
Here I am using A instead of theta .
***********"***********
we know the trigonometric identity
1 ) cot² A = cosec² A - 1
2 ) tan² A = sec² A - 1
********************************
LHS = cot² A - tan² A
= ( cosec² A - 1 ) - ( sec² A - 1 )
= cosec² A - 1 - sec² A + 1
= cosec² A - sec² A
= RHS
Hence proved .
I hope this helps you.
: )
Similar questions