Math, asked by CricketPlayer, 1 year ago

Prove that cot^2A-cot^2B=sin^2B-sin^2A/sin^2A x sin^2B

Answers

Answered by MurliDharVerma
4

 { \cot }^{2} a -  { \cot}^{2} b \\    { \csc }^{2} a - 1 - ( { \csc }^{2} b - 1) \\  \frac{1}{ { \sin}^{2}a }  -  \frac{1}{ { \sin }^{2}b  }  \\  { \sin}^{2} b -  { \sin}^{2} a  \div  sin \: a \times sin \: b \\
this is the verification
Answered by arshikhan8123
1

Concept:

1+cot²A=cosec²A

1/sinA=cosecA

Given:

LHS=cot²A-cot²b

Find:

LHS=RHS=sin²B-sin²A/sin²A x sin²B

Solution:

LHS=cot²A-cot²B

      = csc²A-1-csc²B+1

      =1/sin²A-1/Sin²B

       =sin²B-sin²A/sin²A x sin²B=RHS

Hence proved

#SPJ3

Similar questions