prove that cot 2A-cot2B=(cos2A-cos2B)/(sin2 A.sin2B)=cosec2 A- cosec2 B
Answers
Answered by
14
1.cot²a-cot²b = cos²a-cos²b/sin²a.sin²b
L.H.S;
= cos²a÷sin²a - cos²b÷sin²b
=cos²a .sin²b -cos²b.sin²a ÷ sin²a.sin²b
=cos²a(1-cos²b) - cos²b {1-cos²a} ÷sin²a .sin²b
= cos²a - cos²a cos²b -cos²b +cos²a cos²b ÷sin²a.sin²b
= cos²a-cos²b ÷sin²a.sin²b { R.H.S}
2. =cos²a.sin²b-cos²b.sin²a /sin²a.sin²b
={1-sin²a}sin²b - (1-sin²b)sin²a /sin²a.sin²b
= sin²b-sin²a/sin²a.sin²b
= sin²b/sin²a.sin²b - sin²a/sin²a.sin²b
= 1/sin²a - 1/sin²b
=cosec²a-cosec²b
hence proved...
L.H.S;
= cos²a÷sin²a - cos²b÷sin²b
=cos²a .sin²b -cos²b.sin²a ÷ sin²a.sin²b
=cos²a(1-cos²b) - cos²b {1-cos²a} ÷sin²a .sin²b
= cos²a - cos²a cos²b -cos²b +cos²a cos²b ÷sin²a.sin²b
= cos²a-cos²b ÷sin²a.sin²b { R.H.S}
2. =cos²a.sin²b-cos²b.sin²a /sin²a.sin²b
={1-sin²a}sin²b - (1-sin²b)sin²a /sin²a.sin²b
= sin²b-sin²a/sin²a.sin²b
= sin²b/sin²a.sin²b - sin²a/sin²a.sin²b
= 1/sin²a - 1/sin²b
=cosec²a-cosec²b
hence proved...
Similar questions