Math, asked by tirthashah, 11 months ago

prove that cot 2a + tan a = cosec 2a​

Answers

Answered by Anonymous
6

\huge\mathbb{Hey\:mate}

To prove -

cot2a + tana = Cosec 2a .

Proof -

Taking LHS →

→cot 2a + tan a

Convert cot and tan in terms of sine and cosine.

 \frac{ \cos(2a) }{ \sin(2a) }  +  \frac{ \sin(a) }{ \cos(a) }  \\

Taking sin2a.cosa as LCM

 \frac{ \cos(2a). \cos(a) +  \sin(2a. \sin(a) )   }{ \sin(2a). \cos(a)  }  \\

Now we know that cos ( A-B) = cosAcosB+sinAsinB.So ,

 \frac{ \cos(2a - a) }{ \sin(2a). \cos(a)  }  \\

 \frac{ \cos(a) }{ \sin(2a). \cos(a)  }  \\

 \frac{1}{ \sin(2a) }  \\

We know that reciprocal of sine is Cosec,

→ LHS = Cosec2a = RHS

hence proved

Similar questions