Math, asked by meAnimesh, 2 months ago

prove that cot^2theta-tan^2theta=cosec^2theta-sec^2theta​

Answers

Answered by VεnusVεronίcα
275

\large \mathfrak \pink {\leadsto~Question~:-}

Prove the following :-

\tt cot^2\theta -tan^2\theta = cosec^2\theta  - sec^2\theta

 \\

\large \mathfrak \pink {\leadsto~Solution~:-}

\blue {:~\implies}~\tt LHS=cot^2\theta -tan^2\theta

\blue {:~\implies}~\tt  (cosec^2\theta-1)-(sec^2\theta-1)

\blue {:~\implies}~\tt cosec^2\theta - 1-sec^2\theta  + 1 = RHS

\underline {\boxed {\blue {:~\implies}~\tt LHS=RHS}}

 \\

\large \mathfrak \pink {\leadsto~Concepts~:-}

\blue {:~\implies}\tt cot^2\theta = cosec^2\theta -1

\blue {:~\implies}\tt tan^2\theta = sec^2\theta -1

\\

___________________

Hope everything's clear!

Answered by ItzYourJaani
18

LHS=cot

2

θ−tan

2

θ

\blue {:~\implies}~\tt (cosec^2\theta-1)-(sec^2\theta-1): ⟹ (cosec

2

θ−1)−(sec

2

θ−1)

\blue {:~\implies}~\tt cosec^2\theta - 1-sec^2\theta + 1 = RHS: ⟹ cosec

2

θ−1−sec

2

θ+1=RHS

\underline {\boxed {\blue {:~\implies}~\tt LHS=RHS}}

: ⟹ LHS=RHS

Similar questions