Math, asked by lunakaman, 10 months ago

prove that cot 4x (sin 5x + sin 3x )= cot x ( sin 5x - sin 3x)​

Answers

Answered by Anonymous
1

Answer:

hope it helps u.....MAYA

Attachments:
Answered by Anonymous
20

AnswEr:

LHS = cot 4x (sin 5x + sin 3x)

 \\  \implies \sf \: cos \: 4x \times 2 \: sin( \frac{5x + 3x}{2} ) \: cos \: ( \frac{5x - 3x}{2} ) \\  \\  \\  \implies \sf \:  \frac{cos \: 4x}{sin \: 4x}  \times 2 \: sin \: x \: cos \: 4x \\  \\  \\  \implies \sf \: 2 \: cos \: 4x \: cos \: x \qquad \qquad \: (i) \\  \\

__________________

RHS = cot x (sin 5x - sin 3x)

 \\  \sf \implies \: cot \: x  \times 2 \: sin( \frac{5x - 3x}{2} ) \: cos \: ( \frac{5x + 3x}{2} ) \\  \\  \\  \implies \sf \frac{cos \: x}{sin \: x}  \times 2 \: sin \: x \: cos \: 4x \\  \\  \\  \implies \sf \: 2 \: cos \: 4x \: cos \: x  \qquad \qquad \: (2) \\  \\

From (1) and (2), we obtain LHS = RHS

Similar questions