Prove that,
cot 4x[sin 5x + sin 3x]=cot x(sin 5x - sin 3x)
Answers
Answered by
1
Step-by-step explanation:
hope this may helps you!!!!
Attachments:
Answered by
12
Answer:
cot 4 x [ sin 5 x + sin 3 x ] = cot x ( sin 5 x - sin 3 x ) [ Proved ]
Step-by-step explanation:
Given :
cot 4 x [ sin 5 x + sin 3 x ] = cot x ( sin 5 x - sin 3 x )
L.H.S. = cot 4 x [ sin 5 x + sin 3 x ]
Using sum to product formula :
sin C + sin D = 2 sin ( ( C + D ) / 2 ) . cos ( ( ( C - D ) / 2 )
= > cot 4 x ( 2 sin ( 5 x + 3 x ) / 2 . cos ( 5 x - 3 x ) / 2
= > cot 4 x ( 2 sin 4 x . cos x )
= > cos 4 x / sin 4 x ( 2 sin 4 x . cos x )
= > cos 4 x ( 2 cos x )
= > 2 cos x . cos 4 x
Multiply and divide by sin x :
= > 2 cos x / sin x ( cos 4 x . sin x )
= > cot x ( 2 cos 4 x . sin x )
# 2 cos A. cos B = sin ( A + B ) - sin ( A - B )
= > cot x ( sin 5 x - sin 3 x )
Since L.H.S. = L.H.S
Hence proved.
Attachments:
Similar questions