Math, asked by arbaazhussain0611, 8 months ago

Prove that : cot A (1 - cos A) - cosec A ( sec A-1) = sin A-tan A.

plzz guys answer fast​

Answers

Answered by MaheswariS
1

\underline{\textsf{To prove:}}

\mathsf{cotA(1-cosA)-cosecA(secA-1)=sinA-tanA}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{cotA(1-cosA)-cosecA(secA-1)}

\mathsf{=\dfrac{cosA}{sinA}(1-cosA)-\dfrac{1}{sinA}(\dfrac{1}{cosA}-1)}

\mathsf{=\dfrac{cosA}{sinA}-\dfra{cos^2A}{sinA}-\dfrac{1}{sinA\,cosA}+\dfrac{1}{sinA}}

\mathsf{=\dfrac{cosA}{sinA}-\dfra{cos^2A}{sinA}-\dfrac{1}{sinA\,cosA}+\dfrac{1}{sinA}}

\mathsf{=\dfrac{1}{sinA}-\dfra{cos^2A}{sinA}+\dfrac{cosA}{sinA}-\dfrac{1}{sinA\,cosA}}

\mathsf{=\dfra{1-cos^2A}{sinA}+\dfrac{cos^2A-1}{sinA\,cosA}}

\mathsf{=\dfra{1-cos^2A}{sinA}-\dfrac{(1-cos^2A)}{sinA\,cosA}}

\mathsf{=\dfra{sin^2A}{sinA}-\dfrac{sin^2A}{sinA\,cosA}}

\mathsf{=sinA-\dfrac{sinA}{cosA}}

\mathsf{=sinA-tanA}

\implies\boxed{\mathsf{cotA(1-cosA)-cosecA(secA-1)=sinA-tanA}}

Find more:

If sinA+sinB=C,cosA+cosB=D,then value of sin(A+B)=

​https://brainly.in/question/11128542

Answered by pulakmath007
25

SOLUTION :

TO PROVE

 \sf{ \cot A(1 -  \cos A) -  \cosec A( \sec A - 1) }

 =  \sf{ \sin A \:  -  \tan A}

PROOF

 \sf{ \cot A(1 -  \cos A) -  \cosec A( \sec A - 1) }

 \displaystyle =\sf{ \frac{  \cos A}{  \sin A} \bigg(1 -  \cos A \bigg) -  \frac{ 1}{  \sin A} \bigg( \frac{1}{  \cos A} - 1 \bigg) }

 \displaystyle =\sf{ \frac{  \cos A}{  \sin A} \bigg(1 -  \cos A \bigg) -  \frac{ 1}{  \sin A} \bigg( \frac{1 -  \cos A }{  \cos A}  \bigg) }

 \displaystyle =\sf{ \frac{ 1 -  \cos A}{  \sin A} \bigg(\cos A  -   \frac{1}{  \cos A}  \bigg) }

 \displaystyle =\sf{ \frac{ 1 -  \cos A}{  \sin A} \bigg(  \frac{{\cos}^{2}  A  - 1}{  \cos A}  \bigg) }

 \displaystyle =\sf{ \frac{ 1 -  \cos A}{  \sin A} \bigg(  \frac{ - {\sin}^{2}  A  }{  \cos A}  \bigg) }

 \displaystyle =\sf{  \bigg({ 1 -  \cos A}\bigg) \bigg(  \frac{ - {\sin}  A  }{  \cos A}  \bigg) }

 \displaystyle =\sf{  - \frac{ {\sin}  A  }{  \cos A}   + {\sin}  A  }

 \displaystyle =\sf{  -   {\tan}  A    + {\sin}  A  }

 \displaystyle =\sf{  {\sin}  A-   {\tan}  A   }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 3x=cosecθ and 3/x=cotθ,

then find the value of 3(x²-1/x²)

https://brainly.in/question/21134289

Similar questions