prove that: cot (A+B)=cot A cot B-1/cot A+cot B
note: prove using LHS
Answers
Step-by-step explanation:
LHS:
cot (A+B)
cos(A+B)÷sin(A+B)
According to the formula,
cos(A+B) can be written as cosA cosB -sin A sin B.
similarly,
sin(A+B) can be written as sinA cosB +cosA sin B
substitute these formula in cos(A+B)÷sin (A+B)
And divide both the numerator and denominator by
sinA sin B
That is ,
cos A÷sinA×cos B÷ sin B -sin A sin B ÷sin A sin B whole divided by sin A cos B ÷ sin A sin B + cos A sin B ÷ sin A sin B
you will get;
cot A cot B - 1 ÷ cot B + cot A
LHS=RHS
hence proved .
Answer:
HS:
cot (A+B)
cos(A+B)÷sin(A+B)
According to the formula,
cos(A+B) can be written as cosA cosB -sin A sin B.
similarly,
sin(A+B) can be written as sinA cosB +cosA sin B
substitute these formula in cos(A+B)÷sin (A+B)
And divide both the numerator and denominator by
sinA sin B
That is ,
cos A÷sinA×cos B÷ sin B -sin A sin B ÷sin A sin B whole divided by sin A cos B ÷ sin A sin B + cos A sin B ÷ sin A sin B
you will get;
cot A cot B - 1 ÷ cot B + cot A
LHS=RHS
Step-by-step explanation:
sorry upar se liye cause i am in class 7
and yeh class 10th ka hai na ?