Prove that
cot A - cos A
cosec A-1
cot A + cos A cosec A + 1
Answers
Step-by-step explanation:
Answer:
\frac{cotA - cosA}{cotA+cosA}=\frac{cosecA-1}{cosecA+1}
cotA+cosA
cotA−cosA
=
cosecA+1
cosecA−1
Step-by-step explanation:
LHS =\frac{cotA - cosA}{cotA+cosA}LHS=
cotA+cosA
cotA−cosA
=\frac{\frac{cosA}{sinA}-cosA}{\frac{cosA}{sinA}+cosA}=
sinA
cosA
+cosA
sinA
cosA
−cosA
\begin{gathered}We\:know \:that \\\boxed {cotA= \frac{cosA}{sinA}}\end{gathered}
Weknowthat
cotA=
sinA
cosA
=\frac{cosA\left(\frac{1}{sinA}-1\right)}{cosA\left(\frac{1}{sinA}+1\right)}=
cosA(
sinA
1
+1)
cosA(
sinA
1
−1)
=\frac{\left(\frac{1}{sinA}-1\right)}{\left(\frac{1}{sinA}+1\right)}=
(
sinA
1
+1)
(
sinA
1
−1)
\begin{gathered}= \frac{cosecA-1}{cosecA+1}\\=RHS\end{gathered}
=
cosecA+1
cosecA−1
=RHS
Therefore,
\frac{cotA - cosA}{cotA+cosA}=\frac{cosecA-1}{cosecA+1}
cotA+cosA
cotA−cosA
=
cosecA+1
cosecA−1
•••♪
Answer:
scroll the image
☆ I HOPE IT'S HELPFUL THANK YOU ☆
PLEASE MARK BRAINLIST