prove that cot A - cos A / cot A + cos A = co sec A -1 / co sec A + 1
Answers
Answered by
11
Hi ,
LHS = ( cotA - cosA ) / ( cotA + cosA)
= [CosA/sinA-cosA]/[cosA/sinA+cosA]
= [ cosA(1/sinA-1 ) ]/[cosA(1/sinA + 1)]
= ( 1/sinA - 1 ) / ( 1/sinA + 1 )
= ( CosecA - 1 ) / ( cosecA + 1 )
= RHS
I hope this helps you.
:)
LHS = ( cotA - cosA ) / ( cotA + cosA)
= [CosA/sinA-cosA]/[cosA/sinA+cosA]
= [ cosA(1/sinA-1 ) ]/[cosA(1/sinA + 1)]
= ( 1/sinA - 1 ) / ( 1/sinA + 1 )
= ( CosecA - 1 ) / ( cosecA + 1 )
= RHS
I hope this helps you.
:)
Similar questions