Math, asked by dathraj921, 1 year ago

prove that cot A-cos A/cot A+cos A = cosec A-1/cosec A+1

Answers

Answered by akshitatewari24
8

Answer:


Step-by-step explanation:

(Cot A - CosA)/ (Cot A + Cos A) = (Cosec A - 1)/(Cosec A + 1)


L.H.S


[(CosA/SinA - CosA)] / [(CosA/SinA + CosA)]


[(CosA - CosASinA) / SinA] / [ (CosA + CosASinA) / SinA]


[CosA - CosASinA] / [CosA + CosASinA]


[CosA(1 - SinA] / CosA(1+Sin A) ] =


(1 - SinA)/ (1 + SinA)



R.H.S


(Cosec A - 1) / (Cosec A + 1)


= (1/SinA - 1) / ( 1/ SinA + 1)


= [ ( 1 - SinA)/Sin A ] / [ ( 1 + SinA) / SinA ]


= (1 - Sin A)/(1 + SinA)


Alternatively


L.H.S


(1 - Sin A)/ (1 + Sin A)


Divide each term by Sin A


(1/SinA - SinA/SinA) / (1/SinA + SinA/SinA) =


(Cosec A - 1) / (Cosec A + 1) = R.H.S

Cheers


Answered by ria7414
3
Here is the ans. It may help u
Attachments:

khalidrja78: hiiii
khalidrja78: online ho
Similar questions