prove that cot A-cos A/cot A+cos A = cosec A-1/cosec A+1
Answers
Answered by
8
Answer:
Step-by-step explanation:
(Cot A - CosA)/ (Cot A + Cos A) = (Cosec A - 1)/(Cosec A + 1)
L.H.S
[(CosA/SinA - CosA)] / [(CosA/SinA + CosA)]
[(CosA - CosASinA) / SinA] / [ (CosA + CosASinA) / SinA]
[CosA - CosASinA] / [CosA + CosASinA]
[CosA(1 - SinA] / CosA(1+Sin A) ] =
(1 - SinA)/ (1 + SinA)
R.H.S
(Cosec A - 1) / (Cosec A + 1)
= (1/SinA - 1) / ( 1/ SinA + 1)
= [ ( 1 - SinA)/Sin A ] / [ ( 1 + SinA) / SinA ]
= (1 - Sin A)/(1 + SinA)
Alternatively
L.H.S
(1 - Sin A)/ (1 + Sin A)
Divide each term by Sin A
(1/SinA - SinA/SinA) / (1/SinA + SinA/SinA) =
(Cosec A - 1) / (Cosec A + 1) = R.H.S
Cheers
Answered by
3
Here is the ans. It may help u
Attachments:
khalidrja78:
hiiii
Similar questions