Math, asked by braverkrm, 1 year ago

Prove that (Cot A+Cosec A-1)/(Cot A-Cosec A+1) =(1+Cos A)/(1+Sin A)

Answers

Answered by poisonforthegalaxies
1
I think your question should be Cot A+cosec A-1/cot A- cosec A+1=1+cos A /sin A

Therefore, 
LHS : cot A + cosec A - 1 /  cot A - cosec A + 1
[ (cosA/sinA) +(1/sinA) – 1] / [(cosA/sinA) -(1/sinA) + 1]
{ [cosA + 1-sinA ]/sinA} / { [cosA – 1+sinA ]/sinA }
{ [cosA + 1-sinA ]/sinA} * sinA/[cosA – 1+sinA ]
[cosA + 1-sinA ]/ [cosA – 1+sinA ]
(cosA- sinA) +1/ (cosA+sinA) – 1
{ (cosA- sinA) +1/ (cosA+sinA) – 1}* {(cosA+sinA) +1 /(cosA+sinA) +1}
   ( Rationalising it by"(cosA+sinA) +1")  
{(cosA- sinA)(cosA+sinA) +(cosA- sinA) +(cosA- sinA) +1} /[(cosA+sinA) – 1][(cosA+sinA) +1]
 
{(cos2A- sin2A)+2cosA+sinA- sinA +1}/ (cosA+sinA)2  -1
{ cos2A-(1- cos2A) + 2cosA+1} / (cos2A+sin2A+2sinA cosA) -1
{ cos2A-1+ cos2A + 2cosA+1}  /  2sinA cosA +1 – 1
2cos2A + 2cosA  /  2sinA cosA   
2 cosA (cosA +1) / 2cosA (sinA)
1 + cos A / sin A  LHS = RHS  (Hence proved)
Similar questions