prove that-
(cot A - cosec A)^2 = 1-cosA/1+cosA
Answers
Answered by
13
Hey !!!
from LHS
=>( CotA - cosecA )²
=>(cosA/sinA - 1/sinA)²
=>( cosA - 1 /sinA )²
•°• sin²x = 1 - cos²x
=>( cosA - 1 )² / sin²A
=> (cosA - 1 ) (cosA - 1 ) / ( 1 - cos²A)
=> (cosA - 1 ) ( cosA - 1 ) / ( 1 - cosA ) ( 1 + cosA)
=> cosA - 1 / 1 + cosA RHS prooved ..
Question is lil wrong bro . check it out ✔
___________________________
Hope it helps you !!!
@Rajukumar111
from LHS
=>( CotA - cosecA )²
=>(cosA/sinA - 1/sinA)²
=>( cosA - 1 /sinA )²
•°• sin²x = 1 - cos²x
=>( cosA - 1 )² / sin²A
=> (cosA - 1 ) (cosA - 1 ) / ( 1 - cos²A)
=> (cosA - 1 ) ( cosA - 1 ) / ( 1 - cosA ) ( 1 + cosA)
=> cosA - 1 / 1 + cosA RHS prooved ..
Question is lil wrong bro . check it out ✔
___________________________
Hope it helps you !!!
@Rajukumar111
Answered by
7
(cosec A - cot A)² = 1-cos a / 1 + cos a
( 1/sin A - CosA/SinA)² = ( 1 - Cos/SinA)²
= ( 1 - cos A)²/ Sin²A = (1-cos A )( 1- Cos A)/(1-cis²a)
= ( 1 - cos A )( 1-CisA)/(1+Cos A)( 1-CosA)
= ( 1 - cosA)/(1+cosA) = rhs
hope it helps
mark as brainliest please
( 1/sin A - CosA/SinA)² = ( 1 - Cos/SinA)²
= ( 1 - cos A)²/ Sin²A = (1-cos A )( 1- Cos A)/(1-cis²a)
= ( 1 - cos A )( 1-CisA)/(1+Cos A)( 1-CosA)
= ( 1 - cosA)/(1+cosA) = rhs
hope it helps
mark as brainliest please
Harshisthe1:
thanx
Similar questions