Math, asked by sahasrabuddheshilpa, 1 year ago

prove that cot A + cosec a minus one upon cot a minus cosec A + 1 is equal to 1 + Cos A upon sin a​

Answers

Answered by Anonymous
120

AnsweR :

To Prove :

 \small \sf{ \dfrac{ \cot(A) +  \csc(A)  - 1 }{ \cot(A) -  \csc(A) + 1  }  = \dfrac{ 1 + \cos(A) }{ \sin(A) } }

Proof :

\Longrightarrow \rm{\dfrac{ \cot(A) +  \csc(A)  - 1 }{ \cot(A) -  \csc(A) + 1  }}

⠀⠀⠀⠀⋆ (csc²A - cot²A) = 1

\Longrightarrow \rm{\dfrac{ \cot(A) +  \csc(A)  -  (\csc^{2} (A)  -  \cot^{2} (A) )}{ \cot(A) -  \csc(A) + 1  }}

\Longrightarrow \rm{\dfrac{ \cot(A) +  \csc(A)  -  (\csc (A)  -  \cot (A) )(\csc (A)   +   \cot (A) )}{ \cot(A) -  \csc(A) + 1  }}

⠀⠀⠀⠀⋆ taking (cotA + cscA) Common

\Longrightarrow \rm{\dfrac{ (1 -  (\csc (A)  -  \cot (A) )(\csc (A)   +   \cot (A) )}{ \cot(A) -  \csc(A) + 1  }}

\Longrightarrow \rm{\dfrac{  \cancel{(1 -  \csc (A)   +   \cot (A) )}(\csc (A)   +   \cot (A) )} {\cancel{1 -  \csc(A) +  \cot(A) }}}

\Longrightarrow  \rm{ \csc(A)  +  \cot(A) }

\Longrightarrow  \rm{ \dfrac{1}{ \sin(A) } +  \dfrac{ \cos(A) }{ \sin(A) }  }

\Longrightarrow  \rm{\dfrac{ 1 + \cos(A) }{ \sin(A) }  }

 \therefore \boxed{ \small \sf{ \dfrac{ \cot(A) +  \csc(A)  - 1 }{ \cot(A) -  \csc(A) + 1  }  = \dfrac{ 1 + \cos(A) }{ \sin(A) } }}

Answered by Sharad001
79

Question :-

Prove that

 \frac{ \csc a +  \cot a - 1}{1  -  \csc a + \cot a}  =  \frac{1 +  \cos a}{ \sin a}  \\

Used formula :-

 \star \:  { \csc}^{2}  \theta -   { \cot}^{2}  \theta = 1 \\

Proof :-

We will have to show that left hand side (LHS) is equal to right hand side (RHS).

Taking left hand side

 \star \:  \:  \frac{ \csc a +  \cot a - 1}{1  -  \csc a + \cot a}  \:  \\  \\  \star \:  \frac{ \csc a +  \cot a -  \{ { \csc}^{2}a -  { \cot}^{2}a \}  }{1  -  \csc a + \cot a}  \\  \\  \star \:  \frac{ \csc a +  \cot a -  \{ (\csc  a +  \cot a)( \csc a -  \cot a) \}}{1  -  \csc a + \cot a}  \:  \\  \\  \star \:  \frac{ (\csc a +  \cot a) \{1 -  \csc a +  \cot a \}}{1 -  \csc a +  \cot a}  \\  \\  \star \:  \csc a +  \cot a \\  \\  \star \:  \frac{1}{ \sin a}  +  \frac{ \cos a}{ \sin a}  \\  \\  \star \:  \frac{1 +  \cos a}{ \sin a}

left hand side = right hand side

hence proved .

\__________________/

Similar questions