Math, asked by anuragshukl235, 11 months ago

Prove that :
cot a + cot (60° + a) - cot (60° -a) = 3 cot 3a​

Answers

Answered by Anonymous
13

Solution :

 \sf  \cot a +  \cot(60 + a)  -  \cot(60 - a)  = 3 \cot3a

On solving LHS

 \implies \sf\cot a +  \cot(60 + a)  -  \cot(60 - a)   \\  \\  \implies\sf \cot a +  \frac{ \sin(60 + a) }{ \cos(60 + a)  }  -  \frac{ \cos(60 - a) }{ \sin(60 - a) }  \\  \\ \implies \sf  \cot a +  \frac{ \cos a -  \sqrt{3} \sin a }{ \sqrt{3} \cos a  +  \sin a}  -  \frac{ \cos a +  \sqrt{3} \sin a }{ \sqrt{3} \cos a -  \sin a }  \\  \\ \implies \sf \cot a +  \frac{ - 8 \sin a \cos a}{  3 { \cos}^{2}a -  {sin}^{2} a }  \\  \\ \implies \sf \cot a -  \frac{8 \cot a}{3 { \cot}^{2}a - 1 }  \\  \\  \implies\sf  \frac{3{ \cot}^{3} a -  9 \cot a}{3 { \cot}^{2} a - 1} \\  \\ \implies \sf 3 \bigg( \frac{ { \cot}^{3}a - 3 \cot a }{3 {cot}^{2}a - 1 } \bigg ) \\  \\ \implies \sf 3 \cot3a

Which is equals to RHS

Hence Proved

Important trigonometric identities :

 \sf \sin(a+b) = \sin A \cos B+ \cos A\sin B\\ \\ \cos(a+b) = \cos A \cos B - \sin A \sin B \\ \\ \tan(A+B) = \frac{\tan A \tan B}{1-\tan A \tan B}

Similar questions