Prove that cot A + tan ( π + A ) + ( π/2 + A ) + tan 2π - A ) = 0
Answers
Answered by
7
+ + + = 0, proved.
Step-by-step explanation:
To prove that: + + + = 0.
L.H.S. = + + +
Using the trigonometric identities:
=
= - and
= -
= + + (- ) + (- )
= + - -
= ( - ) + ( - )
= 0 + 0
= 0
= R.H.S., proved.
∴ + + + = 0, proved.
Answered by
3
Step-by-step explanation:
Consider LHS:-
( π = 180 )
cot A + tan (π + A) + tan ( π / 2 + A) + tan (2π - A)
cot A + tan (180+A)+tan (180/2 +A)+ tan(2*180-A)
cot A +tan (180+A)+tan ( 90 + A) + tan (360 - A)
tan (180 + A) = tan A
tan (90 + A) = -cot A
tan (360 - A)= -tan A
cot A + tan A - cot A - tan A = 0 = RHS
Hence proved..
Similar questions