Math, asked by borislais333, 10 months ago

Prove that cot A + tan ( π + A ) + ( π/2 + A ) + tan 2π - A ) = 0​

Answers

Answered by jitumahi435
7

\cot A + \tan ( \pi+ A ) + \tan (\dfrac{\pi}{2} +A) + \tan (2\pi - A) = 0​, proved.

Step-by-step explanation:

To prove that: \cot A + \tan ( \pi+ A ) + \tan (\dfrac{\pi}{2} +A) + \tan (2\pi - A) = 0​.

L.H.S. = \cot A + \tan ( \pi+ A ) + \tan (\dfrac{\pi}{2} +A) + \tan (2\pi - A)

Using the trigonometric identities:

\tan ( \pi+ A ) = \tan A

\tan (\dfrac{\pi}{2} +A) = - \cot A and

\tan (2\pi - A) = - \tan A

= \cot A + \tan A  + (- \cot A) + (- \tan A)

= \cot A + \tan A - \cot A - \tan A

= (\cot A - \cot A) + (\tan A - \tan A)

= 0 + 0

= 0

= R.H.S., proved.

\cot A + \tan ( \pi+ A ) + \tan (\dfrac{\pi}{2} +A) + \tan (2\pi - A) = 0​, proved.

Answered by madhavilatha27
3

Step-by-step explanation:

Consider LHS:-

( π = 180 )

cot A + tan (π + A) + tan ( π / 2 + A) + tan (2π - A)

cot A + tan (180+A)+tan (180/2 +A)+ tan(2*180-A)

cot A +tan (180+A)+tan ( 90 + A) + tan (360 - A)

tan (180 + A) = tan A

tan (90 + A) = -cot A

tan (360 - A)= -tan A

cot A + tan A - cot A - tan A = 0 = RHS

Hence proved..

Similar questions