PROVE that cot A - tan A = 2 cos^2 A - 1 /(sin A cosA)
Answers
Answered by
12
Hey mate !
_______
Given,
L.H.S = cot A - tan A
= cos A / sin A - sin A / cos A
= cos^2 A - sin ^2 A / sin A cos A....(1)
We know, sin^2 A + cos^2 A = 1
•°• sin^2 A = 1 - cos^2 A....(2)
Putting (2) in (1) we get,
= cos^2 A - ( 1 - cos^2 A ) / sin A cos A
= cos^2 A - 1 + cos^2 A / sin A cos A
= 2cos^2 A - 1 / sin A cos A
= R.H.S
Hope it helps !
_______
Given,
L.H.S = cot A - tan A
= cos A / sin A - sin A / cos A
= cos^2 A - sin ^2 A / sin A cos A....(1)
We know, sin^2 A + cos^2 A = 1
•°• sin^2 A = 1 - cos^2 A....(2)
Putting (2) in (1) we get,
= cos^2 A - ( 1 - cos^2 A ) / sin A cos A
= cos^2 A - 1 + cos^2 A / sin A cos A
= 2cos^2 A - 1 / sin A cos A
= R.H.S
Hope it helps !
Answered by
1
Answer:
here's the answer please mark as brainliest and follow me
Attachments:
Similar questions