Prove that Cot A - Tan A = 4 Cot 4A + 2 Tan A
Answers
Answered by
0
first of all, we find one important results .
\begin{lgathered}cotA - tanA = \frac{1}{tanA} - tanA \\ = \frac{1-tan^2A}{tanA} \\ = \frac{2(1-tan^2A)}{2tanA} \\= 2cot2A\end{lgathered}cotA−tanA=tanA1−tanA=tanA1−tan2A=2tanA2(1−tan2A)=2cot2A
hence,
cotA - tanA = 2cot2A
cotA = 2cot2A + tanA use this application here,
so,
tanA + 2tan2A + 4{tan4A +2cot8A}
= tanA + 2tan2A + 4cot4A by using above application
= tanA + 2{tan2A + 2cot4A}
= tanA + 2cot2A by using above application
=cotA by using above application
hence,
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cotA
Similar questions