Math, asked by shantanu30, 1 year ago

prove that cot A+tanB/cotB+tanA = cotA tanB

Answers

Answered by ShreyaBhowmick
445
LHS: cotA + tanB / cotB + tanA

= (cotA + 1/cotB) / (cotB + 1/cotA)

 = (cotAcotB + 1) / cotB / (cotAcotB + 1) / cotA

= cotA / cotB

= cotAtanB

= RHS

hence proved.

Answered by presentmoment
125

\bold{\frac{(\cot A+\tan B)}{(\cot B+\tan A)}=\cot A . \tan B}

Given:

\frac{(\cot A+\tan B)}{(\cot B+\tan A)}=\cot A \cdot \tan B

To Prove:

L.H.S = R.H.S

Proof:

Let simplify the question in form sin and cos

\frac{(\cot A+\tan B)}{(\cot B+\tan A)}=\cot A \cdot \tan B

L.H.S

\frac{(\cot A+\tan B)}{(\cot B+\tan A)}

Simplifying it in terms of sin and cos take the LCM of the denominator  

=\frac{\left(\frac{\cos A}{\sin A}+\frac{\sin B}{\cos B}\right)}{\left(\frac{\cos B}{\sin B}+\frac{\sin A}{\cos A}\right)}

Deducting the value of \cos A \cos B+\sin A \sin B on both sides, we get:

=\frac{\frac{\cos A \cos B+\sin A \sin B}{\sin A \cos B}}{\frac{\cos B \cos A+\sin B \sin A}{\sin B \cos A}}

After crossing out,  \cos B \cos A+\sin B \sin A  we get the value of  

\frac{\cos A \cos B+\sin A \sin B}{\cos B \cos A+\sin B \sin A}, \quad \frac{\sin B \cos A}{\sin A \cos B}

Cancelling out and transforming the identities into cot and tan,  

\bold{\frac{\cos A \sin B}{\sin A \cos B}=\frac{\cos A}{\sin A} \cdot \frac{\sin \mathrm{B}}{\cos B}=\cot A \tan B=R . H . S}

Hence L.H.S = R. H.S

Hence Proved

Therefore, it proves that \bold{\frac{(\cot A+\tan B)}{(\cot B+\tan A)}=\cot A \cdot \tan B}.

Similar questions