Math, asked by shivakumar5265b, 1 month ago

prove that (cot-cosec)2= 1-cos/1+cos​

Answers

Answered by EuphoricBunny
5

{ \sf{ \large {\underline {\underline{\purple{given : }}}}}}\\  \\ { \sf {\underline{\purple{prove \: that : }}}} \\  \\   \sf  \purple{( \cot  \: \theta -  \cosec \theta) {}^{2}   =  ( \frac{1 - cos}{1 + cos \:  \theta} )} \\  \\ \\  { \sf{ \large {\underline {\underline{\pink{solution : }}}}}}\\ \\   \tt \:  =  \: ( \cot  \:  \theta \:  -  \: cosec \:  \theta \: ) {}^{2}  \\  \\  = \tt  \: ( \frac{ \cos \: \theta  }{ sin}  \:  -  \:  \frac{1}{sin} ) {}^{2}  \:  \:  =  \:  \: ( \frac{cos \:  \theta \:  -  \: 1}{sin \:  \theta} ) {}^{2}  \\  \\  \tt \:  =  \frac{(1 - cos \:  \theta)  {}^{2}  }{(sin {}^{2} \:  \theta) }  \:  \:  \: ( \therefore \: sin {}^{2}  \theta \:  +  \: cos {}^{2}  \:  \theta \:  =  \: 1) \\  \\  \tt \:  =  \:  \frac{(1 - cos \:  \theta) {}^{2} }{(1 - cos {}^{2}  \:  \theta)}  \\  \\  \tt \:  =  \:  \frac{(1 -  \cos \theta)(1 - cos \: \theta) }{(1 - cos  \:  \theta)(1 + cos \:  \theta)}  \:     \\  \\ \tt\:   =  \: \frac{1 - cos \:  \theta}{1 + cos \:  \theta}   \\  \\ \tt  \pink{ LHS = RHS} \\  \\  \tt \pink{hence \:  \: proved.}

Similar questions