Math, asked by mdrizwan8596, 1 year ago

Prove that (cot θ - cosec θ)^2 = (1-cos θ/1+cosθ)

Answers

Answered by Beast009
1
hope it helps......:-)
Attachments:
Answered by Zaransha
1

 {( \cotθ -  \cscθ) }^{2}  \\  =  {( \frac{ \cosθ }{ \sinθ} -  \frac{1}{ \sinθ }  )}^{2}  \\  =  {( \frac{ \cosθ -1 }{ \sinθ } )}^{2}  \\  \frac{  (\cosθ -1)( \cosθ -1)}{ { \sin }^{2} θ}  \\
------(i)


Using Trigonometric identity,
sin^2 θ+ cos^2θ=1


sin^2 θ= 1 -cos^2 θ -----(ii)


By inserting (ii) in (i)

 \frac{( \cosθ - 1)( \cosθ  - 1)}{(1  -  { \cos}^{2}θ)} \\  \\  =  \frac{( \cosθ - 1)( \cosθ - 1)  }{(1 -  \cosθ)(1 +  \cosθ) }  \\  =  \frac{ - ( \cosθ - 1)( \cosθ - 1)}{(  \cosθ - 1)(1 +  \cosθ)}  \\  \\  =  \frac{- ( \cosθ - 1)}{(1 +  \cosθ)}  \\  =  \frac{(1 - \cosθ)}{(1 +  \cosθ)}  \\  = RHS \\



Hence proved.
Similar questions