Math, asked by Roufganie6254, 1 year ago

Prove that cot cube theta into sin cube theta upon cos theta + sin theta whole square + 10 cube theta into cos cube theta upon cos theta + sin theta whole square equal to sec theta cosec theta minus one upon cosec theta + sec theta

Answers

Answered by amruthasrikant
15

ur ans is here .. click on the above clip..

u have to solve both LHS and RHS

Attachments:
Answered by amitnrw
15

(Cot³θ* Sin³θ)/(Cosθ + Sinθ)² + (Tan³θ* Cos³θ)/(Cosθ + Sinθ)²  = (SecθCosecθ - 1)/(Cosecθ + Secθ)

Step-by-step explanation:

(Cot³θ* Sin³θ)/(Cosθ + Sinθ)² + (Tan³θ* Cos³θ)/(Cosθ + Sinθ)²  = (SecθCosecθ - 1)/(Cosecθ + Secθ)

LHS =

(Cot³θ* Sin³θ)/(Cosθ + Sinθ)² + (Tan³θ* Cos³θ)/(Cosθ + Sinθ)²

= Cos³θ/(Cosθ + Sinθ)² + (Sin³θ)/(Cosθ + Sinθ)²

= (Cos³θ +Sin³θ)/(Cosθ + Sinθ)²

using a³ + b³ = (a + b)(a² + b² - ab)

= (Cosθ + Sinθ)(Cos²θ + Sin²θ - CosθSinθ)/(Cosθ + Sinθ)²

= (1 -  CosθSinθ)/(Cosθ + Sinθ)

= (1  -  CosθSinθ)/(1/Secθ + 1/Cosecθ)

= SecθCosecθ(1  -  CosθSinθ)/(Cosecθ + Secθ)

=  (SecθCosecθ  - 1)/(Cosecθ + Secθ)

= RHS

(Cot³θ* Sin³θ)/(Cosθ + Sinθ)² + (Tan³θ* Cos³θ)/(Cosθ + Sinθ)²  = (SecθCosecθ - 1)/(Cosecθ + Secθ)

Learn more:

Prove that: (sin3x+sinx)sinx+(cos3x-cosx)

https://brainly.in/question/6631850

cosX-4sinx=1 then sinx+4cosx[tex] cos(x) - Brainly.in

https://brainly.in/question/8892362

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

Similar questions