Math, asked by shankarrockstar6940, 11 months ago

Prove that cot square (90-theta) /tan square theta -1 + cosec square theta / sec square theta-cosec square theta=1/ sin square theta-cos square theta

Answers

Answered by supreetkaur35
58

may this will help you

follow me.....

Attachments:
Answered by jitumahi435
6

We need to recall the following trigonometric formulas.

  • tan\theta=\frac{sin\theta}{cos\theta}
  • cot\theta=\frac{cos\theta}{sin\theta}
  • sec\theta=\frac{1}{cos\theta}
  • cosec\theta=\frac{1}{sin\theta}
  • sin^2\theta+cos^2\theta=1
  • cot^2(90-\theta)=tan\theta

Given:

Prove that: \frac{cot^2(90-\theta)}{tan^2\theta-1}+\frac{cosec^2\theta}{sec^2\theta-cosec^2\theta}=\frac{1}{sin^2\theta-cos^2\theta}

Let's consider,

\frac{cot^2(90-\theta)}{tan^2\theta-1}+\frac{cosec^2\theta}{sec^2\theta-cosec^2\theta}

=\frac{tan^2\theta}{tan^2\theta-1}+\frac{cosec^2\theta}{sec^2\theta-cosec^2\theta}

=\frac{\frac{sin^2\theta}{cos^2\theta} }{\frac{sin^2\theta}{cos^2\theta} -1}+\frac{\frac{1}{sin^2\theta} }{\frac{1}{cos^2\theta} -\frac{1}{sin^2\theta} }

=\frac{\frac{sin^2\theta}{cos^2\theta} }{\frac{sin^2\theta-cos^2\theta}{cos^2\theta} }+\frac{\frac{1}{sin^2\theta} }{\frac{sin^2\theta-cos^2\theta}{cos^2\theta sin^2\theta} }

=\frac{sin^2\theta}{sin^2\theta-cos^2\theta} +\frac{1}{\frac{sin^2\theta-cos^2\theta}{cos^2\theta} }

=\frac{sin^2\theta}{sin^2\theta-cos^2\theta} +\frac{cos^2\theta}{sin^2\theta-cos^2\theta} }

=\frac{sin^2\theta+cos^2\theta}{sin^2\theta-cos^2\theta}

=\frac{1}{sin^2\theta-cos^2\theta}

Hence, proved.

Similar questions