prove that cot teta+tan teta=cosec teta. sec teta
Answers
Answered by
5
Required Answer:-
Given To Prove:
- cot θ + tan θ = cosec θ sec θ
Proof:
To prove this, we need to prove LHS = RHS.
We know that,
→ tan θ = sin θ/cos θ and,
→ cot θ = cos θ/sin θ
Taking LHS,
cot θ + tan θ
= cos θ/sin θ + sin θ/cos θ
LCM of sin θ and cos θ is - sin θ cos θ,
= (cos²θ + sin²θ)/(sin θ cos θ)
We know that,
→ sin²θ + cos²θ = 1
→ LHS = 1/(sin θ cos θ)
Reciprocal of sin θ is cosec θ and that of cos θ is sec θ ★
So, LHS,
= cosec θ sec θ
= RHS (Hence Proved)
Basic Trigonometry Formulae:
1. Relationship between sides.
- sin θ = Height/Hypotenuse.
- cos θ = Base/Hypotenuse.
- tan θ = Height/Base.
- cot θ = Base/Height.
- sec θ = Hypotenuse/Base.
- cosec θ = Hypotenuse/Height.
2. Quotient Identities.
- tan θ = sin θ/cos θ
- cot θ =cos θ/sin θ
3. Reciprocal Identities.
- sin θ = 1/cosec θ.
- cosec θ = 1/sin θ.
- cos θ = 1/sec θ.
- sec θ = 1/cos θ.
- tan θ = 1/cot θ.
- cot θ = 1/tan θ.
4. Cofunction Identities.
- sin(90° - θ) = cos θ and cos(90° - θ) = sin θ.
- cosec(90° - θ) = sec θ and sec(90° - θ) = cosec θ.
- tan(90° - θ) = cot θ and cot(90° - θ) = tan θ
5. Pythagoras Identities.
- sin²θ + cos²θ = 1
- cosec²θ - cot²θ = 1
- sec²θ - tan²θ = 1
•••♪
Similar questions