Math, asked by roly8020, 1 year ago

Prove that
cot\theta -tan\theta=\frac{2cos^2\theta-1}{sin\theta cos\theta}

Answers

Answered by MrThakur14Dec2002
0
solution...............

let \: theta \: denotes \: by \: the \: symbol \: \alpha .


 \cot \alpha - \tan \alpha

 \frac{ \ \cos \alpha }{ \sin \alpha } - \frac{ \sin\alpha }{ \cos\alpha }

 \frac{ { \cos }^{2} \alpha - { \sin }^{2} \alpha }{ \sin\alpha \cos \alpha }

 \frac{ { \cos }^{2} \alpha - (1 - { \cos }^{2} \alpha ) }{ \sin\alpha \cos\alpha }

 \frac{ { \cos }^{2} \alpha - 1 + { \cos }^{2} \alpha }{ \sin\alpha \cos \alpha }

 \frac{2 { \cos }^{2} \alpha - 1}{ \sin \alpha \cos \alpha }

hence........proved..........

↪ Hope this will help you ↩

☞ ⛧⛧ By, Ⓜr. Thakur ⛧⛧
Similar questions