prove that cot theta ÷ 1 - cot theta + tan theta ÷ 1-tan theta = -1
Answers
Answered by
1
heya buddy here is your answer
so for answering your question in a better way i assume that theta=A
so
[cotA/(1-cotA)]+[tanA/(1-tanA)]
TAKING LCM AS (1-cotA)(1-tanA)
then [cotA(1-tanA)+tanA(1-cotA)]/(1-cotA)(1-tanA)
=[cotA-1+tanA-1]/[1-tanA-cotA+1] {as tanA*cotA=1}
=cotA+tanA-2/2-tanA-cotA
=-(2-tanA-cotA)/2-tanA-cotA
=-1
hence proved
hope it helps buddy
click the thanks button
and mark the brainliest buddy
Similar questions