Prove that (cot theta - cosec theta) ^2
= 1-cos theta / 1+cos theta
Answers
Answered by
12
Remember these identities.
csc^2θ = 1/sin^2θ
cotθ = cosθ/sinθ
Proving:
= (cscθ - cotθ)^2
= csc^2θ - 2cscθcotθ + cot^2θ
= 1/sin^2θ - 2(1/sinθ)(cosθ/sinθ) + cos^2θ/sin^2θ
= 1 - 2cosθ + cos^2θ / sin^2θ
= (1 - cosθ)^2 / (1 - cos^2θ)
= (1 - cosθ)^2 / (1 + cosθ)(1 - cosθ)
= (1 - cosθ)/(1 + cosθ) (Verified)
Hope this will help
csc^2θ = 1/sin^2θ
cotθ = cosθ/sinθ
Proving:
= (cscθ - cotθ)^2
= csc^2θ - 2cscθcotθ + cot^2θ
= 1/sin^2θ - 2(1/sinθ)(cosθ/sinθ) + cos^2θ/sin^2θ
= 1 - 2cosθ + cos^2θ / sin^2θ
= (1 - cosθ)^2 / (1 - cos^2θ)
= (1 - cosθ)^2 / (1 + cosθ)(1 - cosθ)
= (1 - cosθ)/(1 + cosθ) (Verified)
Hope this will help
Answered by
11
⭐️⭐️Hope it helps you⭐️⭐️
______________________________
Refer in the attachment✌️
______________________________
Refer in the attachment✌️
Attachments:
Similar questions
Computer Science,
8 months ago
Math,
8 months ago
Math,
1 year ago
Psychology,
1 year ago
Math,
1 year ago
Math,
1 year ago