Prove that (cot theta - cosec theta) 2 = 1-cos theta / 1+cos theta
Answers
Answered by
645
(cotθ-cosecθ)²
=cot²θ-2cotθcosecθ+cosec²θ
=cos²θ/sin²θ-2(cosθ/sinθ)(1/sinθ)+1/sin²θ
=cos²θ/sin²θ-2cosθ/sin²θ+1/sin²θ
=(cos²θ-2cosθ+1)/sin²θ
=(1-cosθ)²/(1-cos²θ)
=(1-cosθ)²/(1+cosθ)(1-cosθ)
=(1-cosθ)/(1+cosθ)
=cot²θ-2cotθcosecθ+cosec²θ
=cos²θ/sin²θ-2(cosθ/sinθ)(1/sinθ)+1/sin²θ
=cos²θ/sin²θ-2cosθ/sin²θ+1/sin²θ
=(cos²θ-2cosθ+1)/sin²θ
=(1-cosθ)²/(1-cos²θ)
=(1-cosθ)²/(1+cosθ)(1-cosθ)
=(1-cosθ)/(1+cosθ)
Answered by
48
Step-by-step explanation:
here is your ans. check it out..
Attachments:
Similar questions