Math, asked by abcd6468, 11 months ago

prove that cot theta minus cosec theta the whole square equals 1 - cos theta upon 1 + cos theta​

Attachments:

Answers

Answered by ujjwalsharma623
8

answer :

(cot0-cosec0)

(cos0/sin0-1/sin0)

(cos0-1/sin0)²

(1+cos0)(1-cos0)/(1+cos0)(1-cos0)

1-cos0/1+cos0

hence proved

Answered by gayatrikumari99sl
2

Answer:

(cot\theta - cosec \theta)^2 =  \frac{(1 - cos\theta )}{(1+ cos\theta)} proved.

Step-by-step explanation:

Explanation:

Given that,(cot\theta - cosec \theta)^2

And according to the question we need to prove that,

(cot\theta - cosec \theta)^2 = \frac{1 - cos\theta}{1 + cos\theta}

So, LHS = (cot\theta - cosec \theta)^2 and RHS = \frac{1 - cos\theta}{1 + cos\theta}

Step 1:

From the question we have,

LHS = (cot\theta - cosec \theta)^2 ..........(i)

As we know, cot\theta = \frac{cos\theta}{sin\theta} and cosec\theta = \frac{1}{sin\theta}

Now, we put the value of cot\theta \ and\ cosec \theta

(\frac{cos\theta}{sin\theta} -\frac{1}{sin\theta}  )^2

(\frac{cos\theta - 1}{sin\theta})^2 = \frac{(cos\theta - 1)^2}{sin^2}

And we also know that sin^2 \theta = (1 - cos^2\theta)

\frac{(cos\theta - 1)^2}{sin^2} = \frac{(cos\theta - 1)^2}{1 - cos^2\theta} =  \frac{(cos\theta - 1)^2}{(1^2 - cos^2\theta)}

\frac{(cos\theta - 1)^2}{(1+ cos\theta)(1 - cos\theta)} = \frac{(cos\theta - 1)(cos\theta - 1)}{-(1+ cos\theta)( cos\theta - 1)}

\frac{(cos\theta - 1)}{-(1+ cos\theta)} =\frac{-(cos\theta - 1)}{(1+ cos\theta)} = \frac{(-cos\theta + 1)}{(1+ cos\theta)}

\frac{(1 - cos\theta )}{(1+ cos\theta)}

Here we proved that LHS = RHS = \frac{(1 - cos\theta )}{(1+ cos\theta)}

Final answer:

Hence, we proved that (cot\theta - cosec \theta)^2 =  \frac{(1 - cos\theta )}{(1+ cos\theta)}.

#SPJ2

Similar questions