Prove that cot theta minus tan theta is equal to 2 cos squared theta minus one/ sin theta cos theta
Answers
Answer:
To prove
cotθ - tanθ = (2cos^θ -1)/sinθcosθ
Let LHS = cotθ - tanθ and RHS = (2cos^θ -1)/sinθcosθ
cotθ - tanθ = cosθ/sinθ - sinθ /cosθ
= [cosθ /cosθ x cosθ/sinθ ] - [sinθ /sinθ x sinθ /cosθ ]
= cos^2 θ/ sinθcosθ - sin^2 θ /sinθcosθ
= [cos^2 θ - sin^2 θ]/ sinθcosθ
= [cos^2 θ - (1 - cos^2 θ)]/ sinθcosθ (Since cos^2 θ + sin^2 θ = 1)
=[cos^2 θ - 1 + cos^2 θ]/ sinθcosθ
= [2cos^2 θ - 1 ]/ sinθcosθ = RHS
Therefore,
cotθ - tanθ = (2cos^θ -1)/sinθcosθ
Answer:
To Prove
cot Ф - tan Ф = (2 cos²Ф -1) /(sinФcosФ)
Taking L.H.S to solve it
L.H.S=cot Ф - tan Ф
as we know that
cot Ф = cos Ф / sin Ф
tan Ф = sin Ф / cos Ф
so the given becomes
L.H.S = (cos Ф / sin Ф) - (sin Ф / cos Ф)
Solving it gives
L.H.S= (cos² Ф - sin²Ф)/(sinФcosФ)
as sin²Ф=1-cos²Ф
so
L.H.S=(cos²Ф-1+cos²Ф)/(sinФcosФ)
=(2cos²Ф-1)/(sinФcosФ)
which is same as R.H.S
so this is the proof of the given