Prove that cot theta -tan theta = 2cos^2 theta-1/sintheta× costheta
Answers
Answered by
7
Answer: Proved
Step-by-step explanation:
Cot Ф - Tan Ф = 2 cos ²Ф - 1/ sinФcosФ
L.H.S = Cos Ф/sinФ - sinФ/cosФ
= cos²Ф - sin Ф/sinФ. cosФ
=cos²Ф - (1- cos Ф)/sin Ф.cosФ
= cos² Ф - 1 + cos²Ф/sinФcosФ
=2 cosФ -1 / sinФ cosФ
Answered by
10
Answer:
To prove
cotθ - tanθ = (2cos^θ -1)/sinθcosθ
Let LHS = cotθ - tanθ and RHS = (2cos^θ -1)/sinθcosθ
cotθ - tanθ = cosθ/sinθ - sinθ /cosθ
= [cosθ /cosθ x cosθ/sinθ ] - [sinθ /sinθ x sinθ /cosθ ]
= cos^2 θ/ sinθcosθ - sin^2 θ /sinθcosθ
= [cos^2 θ - sin^2 θ]/ sinθcosθ
= [cos^2 θ - (1 - cos^2 θ)]/ sinθcosθ (Since cos^2 θ + sin^2 θ = 1)
=[cos^2 θ - 1 + cos^2 θ]/ sinθcosθ
= [2cos^2 θ - 1 ]/ sinθcosθ = RHS
Therefore,
cotθ - tanθ = (2cos^θ -1)/sinθcosθ
Similar questions